
ORIGINAL RESEARCH
published: 05 April 2018

doi: 10.3389/fcimb.2018.00112

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1 April 2018 | Volume 8 | Article 112

Edited by:

Eugenia Carrillo,

Instituto de Salud Carlos III, Spain

Reviewed by:

Anita Hilda Straus,

Federal University of São Paulo, Brazil

Herbert Leonel de Matos Guedes,

Universidade Federal do Rio de

Janeiro, Brazil

*Correspondence:

Salvador Iborra

salvador.iborra@cnic.es

Manuel Soto

msoto@cbm.csic.es

Received: 08 February 2018

Accepted: 21 March 2018

Published: 05 April 2018

Citation:

Garde E, Ramírez L, Corvo L,

Solana JC, Martín ME, González VM,

Gómez-Nieto C, Barral A,

Barral-Netto M, Requena JM, Iborra S

and Soto M (2018) Analysis of the

Antigenic and Prophylactic Properties

of the Leishmania Translation Initiation

Factors eIF2 and eIF2B in Natural and

Experimental Leishmaniasis.

Front. Cell. Infect. Microbiol. 8:112.

doi: 10.3389/fcimb.2018.00112

Analysis of the Antigenic and
Prophylactic Properties of the
Leishmania Translation Initiation
Factors eIF2 and eIF2B in Natural
and Experimental Leishmaniasis
Esther Garde 1, Laura Ramírez 1, Laura Corvo 1, José C. Solana 1, M. Elena Martín 2,

Víctor M. González 2, Carlos Gómez-Nieto 3, Aldina Barral 4, Manoel Barral-Netto 4,

José M. Requena 1, Salvador Iborra 5,6,7* and Manuel Soto 1*

1Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior

de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain, 2Departamento de

Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain,
3 Parasitology Unit, LeishmanCeres Laboratory, Veterinary Faculty, University of Extremadura, Cáceres, Spain, 4Centro de

Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil, 5 Immunobiology of Inflammation Laboratory,

Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain,
6Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain, 7Health Research

Institute (imas12), Ciudad Universitaria, Madrid, Spain

Different members of intracellular protein families are recognized by the immune system

of the vertebrate host infected by parasites of the genus Leishmania. Here, we have

analyzed the antigenic and immunogenic properties of the Leishmania eIF2 and eIF2B

translation initiation factors. An in silico search in Leishmania infantum sequence

databases allowed the identification of the genes encoding the α, β, and γ subunits

and the α, β, and δ subunits of the putative Leishmania orthologs of the eukaryotic

initiation factors F2 (LieIF2) or F2B (LieIF2B), respectively. The antigenicity of these factors

was analyzed by ELISA using recombinant versions of the different subunits. Antibodies

against the different LieIF2 and LieIF2B subunits were found in the sera from human and

canine visceral leishmaniasis patients, and also in the sera from hamsters experimentally

infected with L. infantum. In L. infantum (BALB/c) and Leishmania major (BALB/c or

C57BL/6) challenged mice, a moderate humoral response against these protein factors

was detected. Remarkably, these proteins elicited an IL-10 production by splenocytes

derived from infected mice independently of the Leishmania species employed for

experimental challenge. When DNA vaccines based on the expression of the LieIF2 or

LieIF2B subunit encoding genes were administered in mice, an antigen-specific secretion

of IFN-γ and IL-10 cytokines was observed. Furthermore, a partial protection against

murine CL development due to L. major infection was generated in the vaccinated

mice. Also, in this work we show that the LieIF2α subunit and the LieIF2Bβ and δ

subunits have the capacity to stimulate IL-10 secretion by spleen cells from naïve

mice. B-lymphocytes were identified as the major producers of this anti-inflammatory
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FIGURE 6 | Cytokine response induced by LieIF2 and LieIF2B-based genetic

vaccination in C57BL/6 mice. Three groups of C57BL/6 mice (n = 8 per

group) were inoculated with PBS (Saline group), with de pcDNA

non-recombinant vector (pcDNA group) of with a mixture of the

pcDNA-LieIF2α + pcDNA-LiF2β + pcDNA-LieIF2γ plasmids (LieIF2 group) or

alternatively, with a mixture of the pcDNA-LieIF2Bα + pcDNA-LiF2Bβ +

pcDNA-LieIF2δ plasmids (LieIF2B group) three times, 2 weeks apart. Four

weeks after the last dose, spleen cells from mice of the saline, pcDNA and

LieIF2 or LieIF2B vaccinated groups were extracted and cultured in the

presence, or in the absence (Med), of a mixture of the LieIF2 subunits (LieIF2α,

LieIF2β, and LieIF2γ) for LieIF2 vaccinated mice (A) or a mixture of the LieIF2B

subunits (LieIF2Bα, LieIF2Bβ, and LieIF2δ) for LieIF2B vaccinated animals (B).

Graphs show the level of the indicated cytokines in the cell culture supernatant

determined by sandwich ELISA. Results are presented, as Whisker (min to

max) plots. Asterisks show the statistical differences between the level of

cytokines in the supernatants of the stimulated and the non-stimulated

cultures (Mann–Whitney test), whereas the + or the X symbols show the

statistical differences among saline and vaccinated mice or pcDNA and

vaccinated mice, respectively (Kruskal–Wallis test).

statistical significance was only attained in the cultures stimulated
with either LieIF2Bα or LieIF2Bβ subunits in both mouse strains;
Figure 10C shows the data and statistics and Supplementary
Figure 5A shows representative dot-plots. On the other hand, no
differences were found for CD3+IL10+ cells between stimulated
and unstimulated cultures (Figure 10D; Supplementary Figure
5B). As an additional control, stimulation of the splenocytes was
carried out in the presence of amounts of LPS similar (0.1 ng/ml)
and up to two orders of magnitude higher than those found in
the protein preparations. In these conditions, we detected low
levels of the cytokine in the supernatants (Supplementary Figure

5C). Moreover, no differences were found in the percentages
of B220+IL10+ cells between LPS stimulated or non-stimulated
cultures (Supplementary Figure 5D).

DISCUSSION

It is well-established that after Leishmania infection several
intracellular parasite proteins interact with the immune system
of the mammalian host. The existence of significant sequence
divergence for many intracellular conserved protein families
among Leishmania parasites and other eukaryotes is a common
feature that may be due to the ancient position of Leishmania
genus in the eukaryote phylogenetic tree (Sogin et al., 1986).
From an immunological point of view, the existence of these
differences is an important issue, since many of these protein
families are antigenic in human and canine VL patients and the
humoral and cellular responses are specific for parasite proteins
without cross-reactivity with the host counterparts (Soto et al.,
1999; Requena et al., 2000a; Maalej et al., 2003; Chenik et al.,
2006). The similarity values obtained for the LieIF2 and LieIF2B
subunits and their human orthologs range from 25 to 54%
(Table 1). These values were comparable to those reported for
other members of Leishmania translational machinery already
characterized: L. major eIF3 factor subunits (20–25%, Rezende
et al., 2014), Leishmania donovani eIF5A (45%, Singh et al.,
2014) or L. major eIF4F subunits, (eIF4E, 22%; eIF4A, 56%
and eIF4G, 25%, Dhalia et al., 2005). The data presented in
this work demonstrate that the LieIF2 and LieIF2B are humoral
markers of VL, since all the subunits were recognized by the
sera of human and canine patients. The variability observed
in the reactivity values found for each individual recombinant
subunit in both mammalian hosts suggests the existence of
individual differences in antigen recognition among human and
canine patients. A similar behavior was observed in other studies
performed with individual parasite antigenic proteins, assayed
with sera collections obtained from patients naturally infected
with the parasite in endemic areas (Soto et al., 1999; Maalej
et al., 2003; Goto et al., 2009). Comparison of the percentages of
positive individuals revealed important differences in the pattern
of recognition between both species (Table 2). In humans,
the LieIF2α subunit was the antigen recognized by a larger
number of sera, whereas LieIF2Bβ and LieIF2γ were the most
recognized by canine samples. Differences in canine and human
immune responses to these and other Leishmania antigens may
be reflecting differences in how the parasites interact with the
immune system of both hosts (Goto et al., 2009).

On the other hand, when an experimental model of VL
was employed, namely hamsters infected with L. infantum, we
observed a 100% of positivity (Table 2). The high percentage
value of antigenicity observed can be taken as an indication
that the degree of individual variability in the recognition of
both factors in this inbred experimental model is lower than
that existing in human and dog natural populations. However,
individual differences in the reactivity values of the hamster
sera persisted, since data followed non-parametric distributions
(Supplementary Figure 3C). Something similar occurred when
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FIGURE 7 | Cytokine response against LieIF2 and LieIF2B subunits in vaccinated BALB/c mice. Spleen cells cultures established from BALB/c mice vaccinated with

LieIF2 and LieIF2B genetic vaccines as indicated in the legend of Figure 5 were stimulated with the single LieIF2 subunits (LieIF2α, LieIF2β, and LieIF2γ) for LieIF2

vaccinated mice (A) or the single LieIF2B subunits (LieIF2Bα, LieIF2Bβ, and LieIF2δ) for LieIF2B vaccinated animals (B) or grown in medium alone. Graphs show the

level of the indicated cytokines in the cell culture supernatant determined by sandwich ELISA. Results are presented, as Whisker (min to max) plots. Asterisks mark

the statistical differences among the levels found in the culture supernatants of the three assayed cytokines (Kruskal–Wallis test). Results in each panel are

representative of two independent experiments.

FIGURE 8 | Cytokine response against LieIF2 and LieIF2B subunits in vaccinated C57BL/6 mice. Spleen cells cultures established from C57BL/6 mice vaccinated

with LieIF2 and LieIF2B genetic vaccines as indicated in the legend of Figure 6 were stimulated with the single LieIF2 subunits (LieIF2α, LieIF2β, and LieIF2γ) for

LieIF2 vaccinated mice (A) or the single LieIF2B subunits (LieIF2Bα, LieIF2Bβ, and LieIF2δ) for LieIF2B vaccinated animals (B) or grown in medium alone. Graphs show

the level of the indicated cytokines in the cell culture supernatant determined by sandwich ELISA. Results are presented, as Whisker (min to max) plots. Asterisks

mark the statistical differences among the levels found in the culture supernatants of the three assayed cytokines (Kruskal–Wallis test). Results in each panel are

representative of two independent experiments.

the sera samples employed in this work were assayed with
other antigenic proteins such as the surface protein KMP-11 or
intracellular antigens such as PUF proteins, the HSP20, HSP70,
and HSP83 stress proteins, the H2A and H3 histones or the
LiP2a and LiP2b acidic ribosomal proteins (Requena et al., 2000b;
Montalvo-Alvarez et al., 2008; Folgueira et al., 2010). Inclusion
of this experimental model in our work allowed us to make
a longitudinal analysis of the humoral response appearance.
Interestingly, similar profiles were observed for the anti-LieIF2
or anti-LieIF2B response and antibody generation against SLA
extracts, representing the whole parasite antigenic repertoire. A
continuous increase in the intensity of the response against the
factors and SLA found in this work (Figure 1) was concomitant
to the increase in the number of proteins recognized by the sera
of the hamster as shown previously (Requena et al., 2000b). At the
end of the study, most of the parasite proteins became antigenic,
being this observation in accordance with the induction of
exacerbated humoral responses during disease progression in

symptomatic VL human and canine patients (Miles et al., 2005;
Kumar and Nylén, 2012; Fernandez-Cotrina et al., 2013; Hasker
et al., 2014). It can be concluded then that the production of
antibodies against both factors occurs from the first moments
of infection. This demonstrates an early encounter between both
factors and the immunological system of the host and it is ruled
out that its antigenicity is due to the induction of the polyclonal
responses associated with the pathology of the VL (Deak et al.,
2010).

The intracellular location of the translation factors does not
seem to be an impediment for their antigenicity. Similarly, many
proteins with nuclear and cytosolic location, such as protein
related to the translational machinery, enzymes implicated in
parasite metabolism, heat shock proteins or histones have been
described as immunodominant antigens not only in human and
canine VL (Requena et al., 2000a; Coelho et al., 2009; Soto et al.,
2009, 2015; Ramírez et al., 2013; Baharia et al., 2014; Sundar and
Singh, 2014; Siripattanapipong et al., 2017), but also in human
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FIGURE 9 | Course of L. major infection in vaccinated mice. BALB/c (n = 18 per group) or C57BL/6 (n = 10 per group) were inoculated with saline, with pcDNA, with

the LieIF2 or with the LieIF2B genetic vaccines three times 2 weeks apart. Four weeks after the last inoculation mice were challenge with L. major, following the next

scheme: 5 × 105 stationary phase promastigotes in the footpad (BALB/c, n = 8 per group) or 1 × 103 metacyclic promastigotes in the dermis of both ears (BALB/c

and C57BL/6, n = 10 per group). In (A) the mean ± SD of the difference of thickness between the infected and the uninfected footpad (n = 8 mouse per group) is

represented. The asterisks symbolize the statistically decrease of footpad swelling of the LieIF2 vaccinated group with respect saline or pcDNA groups (Kruskal–Wallis

test). In (C) (BALB/c) and (E) (C57BL/6), the ear lesion diameter (mean ± SD) is shown (n = 20 ears from week 2 to week 5 post-challenge and n = 10 ears from

week 6 to the end of the assay). The statistically significant decrease of ear lesion found in LieIF2 (* asterisks) or in LieIF2B (+ symbol) vaccinated mice with respect

saline of pcDNA group is shown (Kruskal-Wallis test). In the three panels, and for simplicity, the lower value of significance found when data from vaccinated were

compared to saline and pcDNA control data is indicated in the graph. The number of viable parasites in the left popliteal LNs and spleens (BALB/c mice infected in the

footpad; B) , or the ears, the retromandibular LNs and the spleens in BALB/c (D) or C57BL/6 (F) mice challenged in the ear dermis were individually determined by

limiting dilution at the indicated weeks post-challenge. Mean ± SD of the log10 of the parasite burdens in the complete organs is shown. Asterisks represent the

significant differences between the indicated groups (Kruskal–Wallis test). In (B), biological samples from eight animals per group were employed. In (D,F), samples

from five animals were employed at the indicated times post-challenge. All the samples were processed individually.

CL patients havingmoderate anti-Leishmania humoral responses
(Ramírez et al., 2013; Souza et al., 2013; Duarte et al., 2015).
Interaction of these proteins with B lymphocytes for antibody
secretion may occur through complement mediated lysis of the
non-metacyclic parasites causing the release of the whole internal
cellular compounds (Mosser and Edelson, 1984; Ambrosio and

De Messias-Reason, 2005; Moreno et al., 2010). Also, non-
infective promastigotes can be lysed through the activity of
neutrophil extracellular traps although metacyclic promastigotes
are resistant to this innate immunity mechanism (Guimaraes-
Costa et al., 2009, 2014; Hurrell et al., 2016). The release of
different intracellular antigenic proteins contained in secreted
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FIGURE 10 | LieF2α, LieF2B β, and LieIF2δ subunits induce the secretion of IL-10 in B lymphocytes. Spleen cell cultures were established from naïve BALB/c or

C57BL/6 mice (n = 6 each strain). BALB/c (A) of C57BL/6 (B) cells were independently cultured without stimulus (Medium) or with the indicated recombinant

subunits. Graphs show the level of IL-10 culture supernatants. Frequencies of B220+ cells (C) of CD3+ cells (D) producing IL-10 in the cultures after recall with the

indicated recombinant factors. Data are represented as Whisker (min to max) plots. Asterisks show the statistical differences between the data of the stimulated and

the non-stimulated cultures (Kruskal–Wallis test).

vesicles (Silverman et al., 2008; Cuervo et al., 2009; Torrecilhas
et al., 2012) may be also an alternative form of presentation of
those antigens to the host immune system, since Leishmania is
able to release microvesicles in the mammalian host (Silverman
and Reiner, 2012) and their contents have been found to induce
humoral responses in murine susceptible hosts (Hernández-
Chinea, 2007), canine (Lima et al., 2016), and human patients
(Soares et al., 2015) as well as inhibitory signaling for dendritic
cells activation (Markikou-Ouni et al., 2015; Iborra et al., 2016;
von Stebut and Tenzer, 2018). Interestingly, whereas in patients
with the active form of the disease they induce strong humoral

responses (Requena et al., 2000a; Maalej et al., 2003; Rafati et al.,
2007; Costa et al., 2012; Souza et al., 2013) as well as IL-10
mediated responses (Bottrel et al., 2001; de Carvalho et al., 2003;
Antonelli et al., 2004; Carvalho et al., 2005) in asymptomatic or in
cured patients these proteins usually induce Th1-like responses
(Probst et al., 2001; Bourreau et al., 2003; Baharia et al., 2014;
Jaiswal et al., 2014; Cecilio et al., 2017). For this reason, these
proteins are considered adequate humoral and cellular markers
of infection, and the immune response elicited against them can
be useful employed to monitor the development of the infection
and also the success of the treatments.
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A limitation of this work is that we have not tested cellular
samples from natural leishmaniasis patients to analyze the
cellular responses elicited against both factors. However, as an
alternative, we moved onto murine models of leishmaniasis in
order to understand the relationships of the parasite LieIF2 and
LieIF2B and the host cellular immune system. First we found that
these factors are also antigenic in mice infected with L. infantum
(BALB/c) or L. major (BALB/c and C57BL/6) (Table 3). As it is
deduced from data included in the Figure 2 and Supplementary
Figure 4, the quality of the anti-LieIF2 or anti-LieIF2B humoral
response was qualitatively similar to that observed for SLA,
although with a lower intensity. The humoral response against
the translation factors in the L. infantum infected BALB/c showed
the mixed IgG1/IgG2a pattern found in this VL model against
SLA, concomitant to the chronic infection in the spleen and
the active destruction in the liver conducted by a parasite-
specific T-cell dependent macrophage activation (Engwerda and
Kaye, 2000; Garg and Dube, 2006; Loría-Cervera and Andrade-
Narváez, 2014; Sacks and Melby, 2015). In the highly susceptible
BALB/c-L. major model we found a predominant IgG1 antibody
response against both factors, associated with the SLA-dependent
Th2 response typically found in this mouse strain. In the resistant
model C57BL/6-L. major, the low reactivity found against the
factors was associated with the induction of IgG2c antibodies
related to the generation of protective Th1-mediated responses
(Sacks and Noben-Trauth, 2002; Sacks and Melby, 2015). The
patterns of LieIF2- and LieIF2B-driven production of IFN-γ
fits well with the different evolution of the disease in the three
distinct murine models. Although in all cases production of this
inflammatory cytokine is limited, there is a greater tendency for
its secretion by cells from the C57BL/6 mice resistant to CL and
in the BALB/c VL, where parasites are eliminated in the liver
(Figure 3). On the other hand, the L. major infected susceptible
animals were unable to produce LieIF2 and LieIF2B-dependent
IFN-γ (Figure 3). Of note, a predominance of LieIF2 and LieIF2B
factors-mediated IL-10 production was observed in the three
experimental models of murine leishmaniasis regardless clinical
evolution (Figure 3). This down-regulatory cytokine has been
related to disease progression in mice models of CL (Noben-
Trauth et al., 2003; Ronet et al., 2010; Buxbaum, 2015; Lee et al.,
2017) or VL (Murphy et al., 2001; Faleiro et al., 2016) and in
human CL or VL patients (Nylén et al., 2007; Carvalho et al.,
2012, 2015; Gollob et al., 2014; Nabavi et al., 2018). Parasite
proteins implicated in IL-10 production are being considered
virulence factors and markers of disease. This is the case of the
parasite KMP-11, a surface located protein that is implicated in
the stimulation of IL-10 production by patients affected by CL
and also in cultured murine macrophages infected in vitro by
L. amazonensis (de Carvalho et al., 2003; de Mendonça et al.,
2015). Similarly, the recombinant version of the papLe22 antigen
is able to induce IL-10 secretion in human patients affected by
VL (Suffia et al., 2000). In this work, we have found that the
LieIF2- and LieIF2B-related IL-10 production occurred in the
three murine models tested, although was higher in magnitude
in the CL models (Figure 3). The immunological consequences
of this production may be different. It has been previously
reported that deficiency in IL-10 does not alter the final healing
phenotype after L. major challenge in C57BL/6 mice (Schwarz

et al., 2013). On the other hand, IL-10 plays a major role in CL
disease evolution of BALB/cmice, as demonstrated by the healing
phenotype shown by IL-10 deficient mice (Schwarz et al., 2013)
or in the murine VL disease (Murphy et al., 2001). The fact that
some of the subunits of the LieIF2 and LieIF2B factors are able
to induce the secretion of IL-10 in spleen cells from both BALB/c
or C57BL/6 naïve mice could be reinforcing the idea that these
factors can be considered virulence factors. As mentioned above,
the generation of early humoral responses to them is evidence
of their rapid presentation to host B lymphocytes, cells that are
also involved in the development of the disease throughout IL-
10 production (Andreani et al., 2015; Silva-Barrios et al., 2017).
The ability of the factors to induce the secretion of IL-10 in
these cells would contribute to generate an anti-inflammatory
environment in the infected tissues that would facilitate the
progression of the parasite. A similar comportment has been
postulated for the parasite cytosolic tryparedoxin, since it has
been implicated in the induction of IL-10 by B cells of naïve
mice (Cabral et al., 2008). The exposure of these intracellular
Leishmania proteins may participate in immune-pathological
processes by targeting B-cell to produce specific antibodies and
leading to IL-10 secretion. The effect may be similar to the
exposure to sand fly saliva factors that, by up-modulating IL-
10 production enhance Leishmania infection in mice infected
with cutaneous-tropic species (Norsworthy et al., 2004) or in
human patients (Carvalho et al., 2012, 2015; Gollob et al., 2014).
Data obtained in this work reinforce the implication of different
parasite proteins in the modulation of the host immune system in
order to facilitate the progress of infection. Previously reported
examples are the LACK protein, a homolog of the receptor
for activated C kinase in mammalian cells, which mounts an
early IL-4 response after Leishmania infection (Launois et al.,
1997) or some parasite secreted antigens that modulate C57BL/6
immune system toward a Th2 response (Tabatabaee et al., 2011).
Also, the ribosomal protein S3a was found to be implicated
in the induction of polyclonal expansion of B cells beside the
inhibition of T cell proliferative responses (Cordeiro-Da-Silva
et al., 2001).

Modulating the response against some of these
immunologically active proteins by their administration in
combination with adequate adjuvants was postulated as an
interesting field of research for development of prophylactic or
therapeutic vaccines (Badaro et al., 2001; Duarte et al., 2016b;
Reguera et al., 2016). As a proof of concept, the inoculation
of parasite ribosomal proteins combined with un-methylated
CpG motives [ligands for the pro-inflammatory TLR-9 (Reed
et al., 2013)] resulted in the protection against L. major infection
inducing IFN-γ-mediated responses in C57BL/6 or BALB/c
mice, correlated to the control of the humoral responses and
IL-10 production driven by these parasite antigens in the last
model (Iborra et al., 2008). In this work, as a proof of concept
we tested DNA-vaccines based on both factors, taking advantage
of the capacity of these genetic vaccines to induce IFN-γ
mediated cellular responses specific for the proteins encoded
in the plasmid vectors (Kaur et al., 2016; Kumar and Samant,
2016; Maspi et al., 2017). Our data showed that the LieIF2
and LieIF2B vaccinated mice produced IFN-γ in response to
the corresponding subunits of both factors. However we also
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detected a LieIF2- and LieIF2B-specific production of IL-10
following immunization (Figures 5–8). In agreement with the
results obtained in this work, the incapacity to control IL-4 or
IL-10 production beside the induction of IFN-γ was considered
as a bad marker for protection (Roberts et al., 2005) as it has been
correlated with the inability to generate protective responses in
BALB/c mice against L. major (Sjölander et al., 1998; Iborra et al.,
2005, 2007) or L. infantum (Pirdel et al., 2014). The failure in
protection showed in this work for the BALB/c CL model may
be related to the necessity to control the responses mediated by
IL-4 and by IL-10 besides generating IFN-γ as occurred with
other tested vaccines against the parasite in CL (Gomes et al.,
2012; Soto et al., 2015; Duarte et al., 2017) or VL models (Goto
et al., 2011; Martins et al., 2017). On the other hand, protection
in the C57BL/6-L. major model was associated to the induction
of rapid IFN-γ mediated responses after infective challenge
rather than the control of Th2 or IL-10 mediated responses
as occurred with different vaccines based on parasite antigens
or Leishmania live vaccines (Iborra et al., 2005; Kébaïer et al.,
2006; Doroud et al., 2011; Peters et al., 2012; Solana et al., 2017).
In this sense, the appearance of less severe lesions in C57BL/6
vaccinated mice after L. major infective challenge allows to
reinforce the conclusion that both factors play a prominent role
in the immune response after Leishmania infection.

We conclude that the subunits forming LieIF2 and LieIF2B
factors are able to interact with the host immune system
during Leishmania infection in different mammalian hosts. The
induction of antibodies against the different subunits allows their
classification as humoral markers of the disease. In addition,
our findings related to the LieIF2 and LieIF2B production of
IL-10 in mice infected with L. major also highlight the role of
these factors as cellular markers of the disease and link them
with the promotion of susceptibility against leishmaniasis. Since
some of the LieIF2 and LieIF2B subunits are able to induce
the secretion of IL-10 in B cells from naïve mice, they may
be considered virulence factors implicated in the induction of
early down-regulatory immune responses that may facilitate the

progression of the infection. The induction of partial protective
responses in C57BL/6 by the administration of LieIF2 or LieIF2B-
based DNA vaccines opens the possibility of designing new
formulations combining different subunits and adjuvants or
new forms of antigen delivery to improve their prophylactic
capacities.
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