Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12530/26297
Title: Prediction of non-muscle invasive bladder cancer outcomes assessed by innovative multimarker prognostic models.
Authors: 
Keywords: 
Mesh: 
Issue Date: 2016
Citation: BMC Cancer.2016 06;(16):351
Abstract: We adapted Bayesian statistical learning strategies to the prognosis field to investigate if genome-wide common SNP improve the prediction ability of clinico-pathological prognosticators and applied it to non-muscle invasive bladder cancer (NMIBC) patients.
PMID: 27259534
URI: https://hdl.handle.net/20.500.12530/26297
Rights: openAccess
Appears in Collections:Fundaciones e Institutos de Investigación > IIS H. U. Ramón y Cajal > Artículos

Files in This Item:
File Description SizeFormat 
PMC4893282.pdf943.72 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.