Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12530/30286
Title: Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes.
Authors: 
Keywords: 
Mesh: 
Issue Date: 26-Sep-2017
Citation: Cell Rep.2017 Sep;(20)13:3135-3148
Abstract: We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic β cells (Fh1βKO mice) appear normal for 6-8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2. Progressive hyperglycemia in Fh1βKO mice led to dysregulated metabolism in β cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+]i elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D). The impaired GSIS in islets from diabetic Fh1βKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D.
PMID: 28954230
URI: https://hdl.handle.net/20.500.12530/30286
Rights: openAccess
Appears in Collections:Fundaciones e Institutos de Investigación > IIS H. U. Ramón y Cajal > Artículos

Files in This Item:
File Description SizeFormat 
PMC5637167.pdf4.2 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.