Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12530/30466
Title: Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis.
Authors: 
Wheeler, Eleanor
Leong, Aaron
Liu, Ching-Ti
Hivert, Marie-France
Strawbridge, Rona J
Podmore, Clara
Li, Man
Yao, Jie
Sim, Xueling
Hong, Jaeyoung
Chu, Audrey Y
Zhang, Weihua
Wang, Xu
Chen, Peng
Maruthur, Nisa M
Porneala, Bianca C
Sharp, Stephen J
Jia, Yucheng
Kabagambe, Edmond K
Chang, Li-Ching
Chen, Wei-Min
Elks, Cathy E
Evans, Daniel S
Fan, Qiao
Giulianini, Franco
Go, Min Jin
Hottenga, Jouke-Jan
Hu, Yao
Jackson, Anne U
Kanoni, Stavroula
Kim, Young Jin
Kleber, Marcus E
Ladenvall, Claes
Lecoeur, Cecile
Lim, Sing-Hui
Lu, Yingchang
Mahajan, Anubha
Marzi, Carola
Nalls, Mike A
Navarro, Pau
Nolte, Ilja M
Rose, Lynda M
Rybin, Denis V
Sanna, Serena
Shi, Yuan
Stram, Daniel O
Takeuchi, Fumihiko
Tan, Shu Pei
van der Most, Peter J
Van Vliet-Ostaptchouk, Jana V
Wong, Andrew
Yengo, Loic
Zhao, Wanting
Goel, Anuj
Martinez Larrad, Maria Teresa
Radke, Dörte
Salo, Perttu
Tanaka, Toshiko
van Iperen, Erik P A
Abecasis, Goncalo
Afaq, Saima
Alizadeh, Behrooz Z
Bertoni, Alain G
Bonnefond, Amelie
Böttcher, Yvonne
Bottinger, Erwin P
Campbell, Harry
Carlson, Olga D
Chen, Chien-Hsiun
Cho, Yoon Shin
Garvey, W Timothy
Gieger, Christian
Goodarzi, Mark O
Grallert, Harald
Hamsten, Anders
Hartman, Catharina A
Herder, Christian
Hsiung, Chao Agnes
Huang, Jie
Igase, Michiya
Isono, Masato
Katsuya, Tomohiro
Khor, Chiea-Chuen
Kiess, Wieland
Kohara, Katsuhiko
Kovacs, Peter
Lee, Juyoung
Lee, Wen-Jane
Lehne, Benjamin
Li, Huaixing
Liu, Jianjun
Lobbens, Stephane
Luan, Jian'an
Lyssenko, Valeriya
Meitinger, Thomas
Miki, Tetsuro
Miljkovic, Iva
Moon, Sanghoon
Mulas, Antonella
Müller, Gabriele
Müller-Nurasyid, Martina
Nagaraja, Ramaiah
Nauck, Matthias
Pankow, James S
Polasek, Ozren
Prokopenko, Inga
Ramos, Paula S
Rasmussen-Torvik, Laura
Rathmann, Wolfgang
Rich, Stephen S
Robertson, Neil R
Roden, Michael
Roussel, Ronan
Rudan, Igor
Scott, Robert A
Scott, William R
Sennblad, Bengt
Siscovick, David S
Strauch, Konstantin
Sun, Liang
Swertz, Morris
Tajuddin, Salman M
Taylor, Kent D
Teo, Yik-Ying
Tham, Yih Chung
Tönjes, Anke
Wareham, Nicholas J
Willemsen, Gonneke
Wilsgaard, Tom
Hingorani, Aroon D
Egan, Josephine
Ferrucci, Luigi
Hovingh, G Kees
Jula, Antti
Kivimaki, Mika
Kumari, Meena
Njølstad, Inger
Palmer, Colin N A
Serrano Ríos, Manuel
Stumvoll, Michael
Watkins, Hugh
Aung, Tin
Blüher, Matthias
Boehnke, Michael
Boomsma, Dorret I
Bornstein, Stefan R
Chambers, John C
Chasman, Daniel I
Chen, Yii-Der Ida
Chen, Yduan-Tsong
Cheng, Ching-Yu
Cucca, Francesco
de Geus, Eco J C
Deloukas, Panos
Evans, Michele K
Fornage, Myriam
Friedlander, Yechiel
Froguel, Philippe
Groop, Leif
Gross, Myron D
Harris, Tamara B
Hayward, Caroline
Heng, Chew-Kiat
Ingelsson, Erik
Kato, Norihiro
Kim, Bong-Jo
Koh, Woon-Puay
Kooner, Jaspal S
Körner, Antje
Kuh, Diana
Kuusisto, Johanna
Laakso, Markku
Lin, Xu
Liu, Yongmei
Loos, Ruth J F
Magnusson, Patrik K E
März, Winfried
McCarthy, Mark I
Oldehinkel, Albertine J
Ong, Ken K
Pedersen, Nancy L
Pereira, Mark A
Peters, Annette
Ridker, Paul M
Sabanayagam, Charumathi
Sale, Michele
Saleheen, Danish
Saltevo, Juha
Schwarz, Peter Eh
Sheu, Wayne H H
Snieder, Harold
Spector, Timothy D
Tabara, Yasuharu
Tuomilehto, Jaakko
van Dam, Rob M
Wilson, James G
Wilson, James F
Wolffenbuttel, Bruce H R
Wong, Tien Yin
Wu, Jer-Yuarn
Yuan, Jian-Min
Zonderman, Alan B
Soranzo, Nicole
Guo, Xiuqing
Roberts, David J
Florez, Jose C
Sladek, Robert
Dupuis, Josée
Morris, Andrew P
Tai, E-Shyong
Selvin, Elizabeth
Rotter, Jerome I
Langenberg, Claudia
Barroso, Inês
Meigs, James B
Mesh: 
Issue Date: Sep-2017
Citation: PLoS Med..2017 Sep;(14)9:e1002383
Abstract: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.
PMID: 28898252
URI: https://hdl.handle.net/20.500.12530/30466
Rights: openAccess
Appears in Collections:Fundaciones e Institutos de Investigación > IIS H. U. Clínico San Carlos > Artículos

Files in This Item:
File Description SizeFormat 
PMC5595282.pdf3.13 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.