Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12530/32776
Title: Insights into the pathological mechanisms of p85α mutations using a yeast-based phosphatidylinositol 3-kinase model.
Authors: 
Keywords: 
Mesh: 
Issue Date: 2017
Citation: Biosci. Rep..2017 04;(37)2:
Abstract: In higher eukaryotes, cell proliferation is regulated by class I phosphatidylinositol 3-kinase (PI3K), which transduces stimuli received from neighboring receptors by local generation of PtdIns(3,4,5)P3 in cellular membranes. PI3K is a heterodimeric protein consisting of a regulatory and a catalytic subunit (p85 and p110 respectively). Heterologous expression of p110α in Saccharomyces cerevisiae leads to toxicity by conversion of essential PtdIns(4,5)P2 into futile PtdIns(3,4,5)P3, providing a humanized yeast model for functional studies on this pathway. Here, we report expression and functional characterization in yeast of all regulatory and catalytic human PI3K isoforms, and exploitation of the most suitable setting to functionally assay panels of tumor- and germ line-associated PI3K mutations, with indications to the limits of the system. The activity of p110α in yeast was not compromised by truncation of its N-terminal adaptor-binding domain (ABD) or inactivation of the Ras-binding domain (RBD). In contrast, a cluster of positively charged residues at the C2 domain was essential. Expression of a membrane-driven p65α oncogenic-truncated version of p85α, but not the full-length protein, led to enhanced activity of α, β, and δ p110 isoforms. Mutations impairing the inhibitory regulation exerted by the p85α iSH2 domain on the C2 domain of p110α yielded the latter non-responsive to negative regulation, thus reproducing this oncogenic mechanism in yeast. However, p85α germ line mutations associated with short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome did not increase PI3K activity in this model, supporting the idea that SHORT syndrome-associated p85α mutations operate through mechanisms different from the canonical disruption of inhibitory p85-p110 interactions typical of cancer.
PMID: 28143957
URI: https://hdl.handle.net/20.500.12530/32776
Rights: openAccess
Appears in Collections:Fundaciones e Institutos de Investigación > IIS H. U. Ramón y Cajal > Artículos

Files in This Item:
File Description SizeFormat 
PMC5350601.pdf1.45 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.