Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12530/34218
Title: | Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering. | |
Authors: | ||
Keywords: | ||
Issue Date: | 5-Jun-2018 | |
Citation: | Polymers (Basel).2018 Jun;(10)6: | |
Abstract: | The immobilization of biocatalysts on magnetic nanomaterial surface is a very attractive alternative to achieve enzyme nanoderivatives with highly improved properties. The combination between the careful tailoring of nanocarrier surfaces and the site-specific chemical modification of biomacromolecules is a crucial parameter to finely modulate the catalytic behavior of the biocatalyst. In this work, a useful strategy to immobilize chemically aminated lipase B from Candida antarctica on magnetic iron oxide nanoparticles (IONPs) by covalent multipoint attachment or hydrophobic physical adsorption upon previous tailored engineering of nanocarriers with poly-carboxylic groups (citric acid or succinic anhydride, CALBEDA@CA-NPs and CALBEDA@SA-NPs respectively) or hydrophobic layer (oleic acid, CALBEDA@OA-NPs) is described. After full characterization, the nanocatalysts have been assessed in the enantioselective kinetic resolution of racemic methyl mandelate. Depending on the immobilization strategy, each enzymatic nanoderivative permitted to selectively improve a specific property of the biocatalyst. In general, all the immobilization protocols permitted loading from good to high lipase amount (149 < immobilized lipase < 234 mg/gFe). The hydrophobic CALBEDA@OA-NPs was the most active nanocatalyst, whereas the covalent CALBEDA@CA-NPs and CALBEDA@SA-NPs were revealed to be the most thermostable and also the most enantioselective ones in the kinetic resolution reaction (almost 90% ee R-enantiomer). A strategy to maintain all these properties in long-time storage (up to 1 month) by freeze-drying was also optimized. Therefore, the nanocarrier surface engineering is demonstrated to be a key-parameter in the design and preparation of lipase libraries with enhanced catalytic properties. | |
PMID: | 30966649 | |
URI: | https://hdl.handle.net/20.500.12530/34218 | |
Rights: | openAccess | |
Appears in Collections: | Fundaciones e Institutos de Investigación > IIS H. U. Ramón y Cajal > Artículos | |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PMC6404122.pdf | 1.95 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.