Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12530/54470
Title: Interpreting clinical latent representations using autoencoders and probabilistic models
Authors: 
Filiation: Dirección Económica-Financiera. Hospital Universitario de Fuenlabrada
Mesh: Models, Statistical
Latent Class Analysis
Decs: Análisis de Clases Latentes
Modelos Estadísticos
Issue Date: 16-Nov-2021
Publisher: Elsevier BV
Citation: Chushig-Muzo D, Soguero-Ruiz C, Miguel Bohoyo P, Mora-Jiménez I. Interpreting clinical latent representations using autoencoders and probabilistic models. Artificial Intelligence in Medicine. 2021;122:102211.
URI: https://hdl.handle.net/20.500.12530/54470
Rights: info:eu-repo/semantics/openAccess
ISSN: 0933-3657
Appears in Collections:Hospitales > H. U. de Fuenlabrada > Artículos

Files in This Item:
File Description SizeFormat 
Artifical Intelligence Medicine.pdf2,11 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons