Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12530/56850
Title: The most recurrent monogenic disorders that overlap with the phenotype of Rett syndrome.
Authors: 
Keywords: 
Mesh: 
Issue Date: 2-May-2019
Citation: Eur J Paediatr Neurol.2019;(23)4:609-620
Abstract: Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that is caused by mutations in the MECP2 gene; however, defects in other genes (CDKL5 and FOXG1) can lead to presentations that resemble classic RTT, although they are not completely identical. Here, we attempted to identify other monogenic disorders that share features of RTT. A total of 437 patients with a clinical diagnosis of RTT-like were studied; in 242 patients, a custom panel with 17 genes related to an RTT-like phenotype was run via a HaloPlex-Target-Enrichment-System. In the remaining 195 patients, a commercial TruSight-One-Sequencing-Panel was analysed. A total of 40 patients with clinical features of RTT had variants which affect gene function in six genes associated with other monogenic disorders. Twelve patients had variants in STXBP1, nine in TCF4, six in SCN2A, five in KCNQ2, four in MEF2C and four in SYNGAP1. Genetic studies using next generation sequencing (NGS) allowed us to study a larger number of genes associated with RTT-like simultaneously, providing a genetic diagnosis for a wider group of patients. These new findings provide the clinician with more information and clues that could help in the prevention of future symptoms or in pharmacologic therapy.
PMID: 31105003
URI: https://hdl.handle.net/20.500.12530/56850
Appears in Collections:Fundaciones e Institutos de Investigación > FIB H. Infantil U. Niño Jesús > Artículos

Files in This Item:
The file with the full text of this item is not available due to copyright restrictions or because there is no digital version. Authors can contact the head of the repository of their center to incorporate the corresponding file.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.