Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12530/56871
Title: Dynamical properties of feedback signalling in B lymphopoiesis: A mathematical modelling approach.
Authors: 
Keywords: 
Mesh: 
Issue Date: 19-Mar-2021
Citation: J Theor Biol.2021;(522):110685
Abstract: Haematopoiesis is the process of generation of blood cells. Lymphopoiesis generates lymphocytes, the cells in charge of the adaptive immune response. Disruptions of this process are associated with diseases like leukaemia, which is especially incident in children. The characteristics of self-regulation of this process make them suitable for a mathematical study. In this paper we develop mathematical models of lymphopoiesis using currently available data. We do this by drawing inspiration from existing structured models of cell lineage development and integrating them with paediatric bone marrow data, with special focus on regulatory mechanisms. A formal analysis of the models is carried out, giving steady states and their stability conditions. We use this analysis to obtain biologically relevant regions of the parameter space and to understand the dynamical behaviour of B-cell renovation. Finally, we use numerical simulations to obtain further insight into the influence of proliferation and maturation rates on the reconstitution of the cells in the B line. We conclude that a model including feedback regulation of cell proliferation represents a biologically plausible depiction for B-cell reconstitution in bone marrow. Research into haematological disorders could benefit from a precise dynamical description of B lymphopoiesis.
PMID: 33745905
URI: https://hdl.handle.net/20.500.12530/56871
Appears in Collections:Fundaciones e Institutos de Investigación > FIB H. Infantil U. Niño Jesús > Artículos

Files in This Item:
The file with the full text of this item is not available due to copyright restrictions or because there is no digital version. Authors can contact the head of the repository of their center to incorporate the corresponding file.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.