Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12530/57218
Title: Polymorphisms in eicosanoid-related biosynthesis enzymes associated with acute urticaria/angioedema induced by nonsteroidal anti-inflammatory drug hypersensitivity.
Authors: 
Mesh: 
Issue Date: 5-Jul-2021
Citation: Br J Dermatol.2021;(185)4:815-824
Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) are the main triggers of drug hypersensitivity, with NSAID-induced acute urticaria/angioedema (NIUA) the most frequent phenotype. NSAID hypersensitivity is caused by cyclooxygenase 1 inhibition, which leads to an imbalance in prostaglandin (PG) and cysteinyl leukotriene (CysLT) synthesis. As only susceptible individuals develop NSAID hypersensitivity, genetic factors are believed to be involved; however, no study has assessed the overall genetic variability of key enzymes in PG and CysLT synthesis in NSAID hypersensitivity. To evaluate simultaneously variants in the main genes involved in PG and CysLT biosynthesis in NIUA. Two independent cohorts of patients were recruited in Spain, alongside NSAID-tolerant controls. The discovery cohort included only patients with NIUA; the replication cohort included patients with NSAID-exacerbated respiratory disease (NERD). A set of tagging single-nucleotide polymorphisms (tagSNPs) in PTGS1, PTGS2, ALOX5 and LTC4S was genotyped using mass spectrometry coupled with endpoint polymerase chain reaction. The study included 1272 individuals. Thirty-five tagSNPs were successfully genotyped in the discovery cohort, with three being significantly associated after Bonferroni correction (rs10306194 and rs1330344 in PTGS1; rs28395868 in ALOX5). These polymorphisms were genotyped in the replication cohort: rs10306194 and rs28395868 remained associated with NIUA, and rs28395868 was marginally associated with NERD. Odds ratios (ORs) in the combined analysis (discovery and replication NIUA populations) were 1·7 for rs10306194 [95% confidence interval (CI) 1·34-2·14; Pcorrected = 2·83 × 10-4 ) and 2·19 for rs28395868 (95% CI 1·43-3·36; Pcorrected = 0·002). Variants of PTGS1 and ALOX5 may play a role in NIUA and NERD, supporting the proposed mechanisms of NSAID-hypersensitivity and shedding light on their genetic basis.
PMID: 33955560
URI: https://hdl.handle.net/20.500.12530/57218
Appears in Collections:Hospitales > H. Central de la Cruz Roja San José y Santa Adela > Artículos

Files in This Item:
The file with the full text of this item is not available due to copyright restrictions or because there is no digital version. Authors can contact the head of the repository of their center to incorporate the corresponding file.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.