Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12530/87747
Título : Discriminating Bacterial Infection from Other Causes of Fever Using Body Temperature Entropy Analysis
Autor : 
Filiación: Hospital Universitario de Mostoles
Palabras clave : 
Mesh: 
Fecha de publicación : 5-abr-2022
Editorial : MDPI AG
Citación : Entropy (Basel).2022 Apr;(24)4:
Resumen : Body temperature is usually employed in clinical practice by strict binary thresholding, aiming to classify patients as having fever or not. In the last years, other approaches based on the continuous analysis of body temperature time series have emerged. These are not only based on absolute thresholds but also on patterns and temporal dynamics of these time series, thus providing promising tools for early diagnosis. The present study applies three time series entropy calculation methods (Slope Entropy, Approximate Entropy, and Sample Entropy) to body temperature records of patients with bacterial infections and other causes of fever in search of possible differences that could be exploited for automatic classification. In the comparative analysis, Slope Entropy proved to be a stable and robust method that could bring higher sensitivity to the realm of entropy tools applied in this context of clinical thermometry. This method was able to find statistically significant differences between the two classes analyzed in all experiments, with sensitivity and specificity above 70% in most cases.
PMID: 35455174
URI : https://hdl.handle.net/20.500.12530/87747
Derechos: info:eu-repo/semantics/openAccess
ISSN : 1099-4300
Aparece en las colecciones: Hospitales > H. U. de Móstoles > Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Discriminating Bacterial Infection from Other Causes of Fever Using Body Temperature Entropy Analysis.pdf313.13 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.