Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12530/87747
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVargas, Borja-
dc.contributor.authorCuesta-Frau, David-
dc.contributor.authorGonzález-López, Paula-
dc.contributor.authorFernandez-Cotarelo, Maria-Jose-
dc.contributor.authorVázquez-Gómez, Óscar-
dc.contributor.authorColás Herrera, Ana-
dc.contributor.authorVarela, Manuel-
dc.date.accessioned2023-11-16T11:30:25Z-
dc.date.available2023-11-16T11:30:25Z-
dc.date.issued2022-04-05-
dc.identifier.citationEntropy (Basel).2022 Apr;(24)4:es_ES
dc.identifier.issn1099-4300-
dc.identifier.urihttps://hdl.handle.net/20.500.12530/87747-
dc.description.abstractBody temperature is usually employed in clinical practice by strict binary thresholding, aiming to classify patients as having fever or not. In the last years, other approaches based on the continuous analysis of body temperature time series have emerged. These are not only based on absolute thresholds but also on patterns and temporal dynamics of these time series, thus providing promising tools for early diagnosis. The present study applies three time series entropy calculation methods (Slope Entropy, Approximate Entropy, and Sample Entropy) to body temperature records of patients with bacterial infections and other causes of fever in search of possible differences that could be exploited for automatic classification. In the comparative analysis, Slope Entropy proved to be a stable and robust method that could bring higher sensitivity to the realm of entropy tools applied in this context of clinical thermometry. This method was able to find statistically significant differences between the two classes analyzed in all experiments, with sensitivity and specificity above 70% in most cases.es_ES
dc.language.isoenes_ES
dc.publisherMDPI AGes_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectApproximate Entropyes_ES
dc.subjectSample Entropyes_ES
dc.subjectSlope Entropyes_ES
dc.subjectbody temperaturees_ES
dc.subjectclassificationes_ES
dc.subjectfeveres_ES
dc.subjecttime serieses_ES
dc.subject.meshEntropyes_ES
dc.subject.meshBody Temperaturees_ES
dc.subject.meshFeveres_ES
dc.titleDiscriminating Bacterial Infection from Other Causes of Fever Using Body Temperature Entropy Analysises_ES
dc.typeArtículoes_ES
dc.identifier.pubmedID35455174es_ES
dc.format.volume24es_ES
dc.contributor.funderInstituto de Salud Carlos III (FIS: PI17/00856)es_ES
dc.description.peerreviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.3390/e24040510es_ES
dc.identifier.journalEntropy (Basel, Switzerland)es_ES
dc.identifier.journalabbreviationEntropyes_ES
dc.contributor.authoraffiliationHospital Universitario de Mostoleses_ES
dc.format.number4es_ES
Appears in Collections:Hospitales > H. U. de Móstoles > Artículos



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.